Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Transl Sci ; 15(11): 2613-2624, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36065758

RESUMO

Cinitapride is a gastrointestinal prokinetic drug, prescribed for the treatment of functional dyspepsia, and as an adjuvant therapy for gastroesophageal reflux disease. In this study, we aimed to explore the impact of relevant variants in CYP3A4 and CYP2C8 and other pharmacogenes, along with demographic characteristics, on cinitapride pharmacokinetics and safety; and to evaluate the impact of CYP2C8 alleles on the enzyme's function. Twenty-five healthy volunteers participating in a bioequivalence clinical trial consented to participate in the study. Participants were genotyped for 56 variants in 19 genes, including cytochrome P450 (CYP) enzymes (e.g., CYP2C8 or CYP3A4) or transporters (e.g., SLC or ABC), among others. CYP2C8*3 carriers showed a reduction in AUC of 42% and Cmax of 35% compared to *1/*1 subjects (p = 0.003 and p = 0.011, respectively). *4 allele carriers showed a 45% increase in AUC and 63% in Cmax compared to *1/*1 subjects, although these differences did not reach statistical significance. CYP2C8*3 and *4 alleles may be used to infer the following pharmacogenetic phenotypes: ultrarapid (UM) (*3/*3), rapid (RM) (*1/*3), normal (NM) (*1/*1), intermediate (IM) (*1/*4), and poor (PM) metabolizers (*4/*4). In this study, we properly characterized RMs, NMs, and IMs; however, additional studies are required to properly characterize UMs and PMs. These findings should be relevant with respect to cinitapride, but also to numerous CYP2C8 substrates such as imatinib, loperamide, montelukast, ibuprofen, paclitaxel, pioglitazone, repaglinide, or rosiglitazone.


Assuntos
Benzamidas , Citocromo P-450 CYP3A , Citocromo P-450 CYP2C8/genética , Sistema Enzimático do Citocromo P-450 , Fenótipo
2.
Front Pharmacol ; 13: 937045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873584

RESUMO

Background-Adverse drug reactions (ADRs) are a public health issue, due to their great impact on morbidity, mortality, and economic cost. The use of automatized laboratory alerts could simplify greatly its detection. Objectives-We aimed to evaluate the performance of a laboratory alerts system as a method for detecting ADRs, using hyponatremia and rhabdomyolysis as case studies. Methods-This is a retrospective observational study conducted in 2019 during a 6-month period, including patients hospitalized at the Hospital Universitario de La Princesa. Patients were identified using altered laboratory parameters corresponding to the two signals: "rhabdomyolysis" (creatine phosphokinase >5 times the upper limit of normality (ULN): >1000 U/L for men and >900 U/L for women) and "hyponatremia" (<116 mEq/L) were detected. In cases where ADR was suspected, causality assessment was performed using the algorithm of the Spanish Pharmacovigilance System (SEFV). Results-During the study period, 180 patients were studied for the "rhabdomyolysis" signal, 6 of them were found to have an ADR (3.3%). The sensitivity of the test was 60%, specificity 97%, and positive predictive value 41%. 28 patients were studied for the "hyponatremia" signal, and 11 patients were found to have an ADR (39.3%), with a sensitivity of 76.9%, a specificity of 93.3%, and a positive predictive value of 88.2%. We found no relationship between altered laboratory values and risk of ADR in any of the cases studied. Conclusion-A pharmacovigilance program based on automatized laboratory signals could be an effective method to detect ADR. The study of the "hyponatremia" laboratory alert is more efficient than "rhabdomyolysis". The evaluation of the hyponatremia alert allows the identification of 12 times more ADRs than the rhabdomyolysis alert, which means less time spent per alert evaluated to identify an ADR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...